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Abstract

A lot of research work has been directed toward the study of oscillatory thermocapillary convection for the past

about 20 years. However, the real mechanism for the onset of oscillatory thermocapillary convection is still not fully

understood. The reasons are as follows. If, to most people, the Marangoni number, Ma, is the only parameter to de-

scribe the onset of oscillatory thermocapillary convection, why it cannot correlate the ground-based and microgravity

experimental data properly? If the ‘‘surface-deformation number’’ or the so-called ‘‘S-parameter’’ is the parameter

which can correlate the experimental data properly, why it cannot be derived without conjectures?

To resolve this deficiency, multiple-scale analysis is applied to determine, among others, the characteristic length,

time, and velocity scales for an unsteady, two-dimensional thermocapillary convection with a deformable free surface in

a rectangular cavity. For flow situations with A2Ma;0 � Oð1Þ, A2Rr;0 � Oð1Þ, and Pr > Oð1Þ, the ratio of the free

surface-variation time scale to the convective time scale of the main surface flow turns out to be the so-called ‘‘S-
parameter’’. The S-parameter thus implies physically a delayed cooling effect of the return flow on the surface flow.

Therefore, the most important contribution of the present study is to provide a theoretical basis for the derivation of the

S-parameter and, hopefully, guidance for the study of oscillatory thermocapillary convection.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The surface tension of an interface between two im-

miscible liquids or of a free surface between a liquid and

a passive gas depends generally on temperature, com-

position, and electrical potential. In many cases, it is a

monotonically decreasing function of temperature.

Therefore, any temperature gradient along the interface

or free surface will, without the existence of contami-

nation, generate a surface-tension gradient and hence a

bulk fluid motion through the viscous diffusion. Such a

fluid motion is called thermocapillary convection.

Thermocapillary convection can be found in many ap-
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plications as an important or even a dominant effect,

especially in small scale systems or microgravity envi-

ronments [1]. Examples are migration of a droplet or a

bubble in a nonuniform temperature field [2–4], flame

spreading over pools of liquid fuel [5], welding [6],

crystal growth from the melt [7,8], etc. Studies of flows

induced by surface-tension gradients along an interface

or free surface that were made up to the early 1970s were

summarized by Ostrach [9].

Because of its importance from both the academic

and application points of view, serious attention has been

given to the studies of thermocapillary convections since

the late 1970s. Most of the studies were related to the

crystal-growth flows, especially on the transition from

steady to oscillatory thermocapillary flows, and were

studied experimentally [10–14], analytically [15–20], and

numerically [21–29].
ed.
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Nomenclature

A aspect ratio

Ca capillary number

D original depth of liquid layer

H instant height of liquid layer

h dimensionless height of liquid layer

L length of rectangular cavity

Ma Marangoni number

Ma;0 Marangoni number conventionally adopted

Ma;S Marangoni number based on actual surface

velocity

P pressure

P0 reference pressure

P1 ambient pressure

p dimensionless pressure

Pr Prandtl number

Rr surface-tension Reynolds number

Rr;0 surface-tension Reynolds number conven-

tionally adopted

Rr;S surface-tension Reynolds number based on

actual surface velocity

T temperature

TH higher temperature

TL lower temperature

DT0 reference temperature difference

t dimensionless time

ðU ; V Þ velocity vector

ðU0; V0Þ reference velocity vector

ðUr; VrÞ velocity vector of return flow

US surface velocity

ðu; vÞ dimensionless velocity vector

ðX ; Y Þ coordinate system

ðx; yÞ dimensionless coordinate system

a thermal diffusivity

D small length scale near side walls

d boundary layer thickness

l dynamic viscosity

m kinematic viscosity

r dimensionless surface tension

r̂r surface tension

r̂r0 reference surface tension

r̂rT surface-tension derivative with respect to

temperature

s time

s0 reference time

h dimensionless temperature
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However, the physical mechanism for the onset of

oscillatory thermocapillary flows are still not fully un-

derstood and convincing due to the complexity of the

problem itself and, probably, the inappropriate ap-

proach of the analysis. The reason for this argument is

that if the Marangoni number, Ma, or the surface-ten-

sion Reynolds number, Rr, is the only parameter to

describe the onset of oscillatory thermocapillary con-

vection, why it cannot correlate the ground-based and

microgravity experimental data properly? If the ‘‘sur-

face-deformation number’’ or the so-called ‘‘S-number’’

is the parameter which can correlate the experimental

data properly [30–32], why it cannot be derived without

conjectures? The complexities and difficulties of the

unsteady thermocapillary convection mainly come from

the nonlinearity of the problem and the coupling be-

tween the velocity and temperature fields through the

governing equations and boundary conditions imposed

on the interface or free surface. As a result, the tem-

perature distributions and the induced flow structures

may be quite different from one parameter regime to

another. Surface deformation makes the problem even

more formidable. Conventional treatments may there-

fore possess deficiency in exploring the essential physics

for such a complicated problem. Hence, in order to help

formulating and solving the problem properly, phe-

nomenological study based on the multiple-scale analy-

sis seems to be an appropriate first-step approach.
Moreover, thermocapillary convection in a confined

container is multiple-scaled in nature. The energy

equation determines the length scales of the temperature

distribution while the momentum equation determines

the length scales of the velocity field. Surface deforma-

tion may generate another length scale which is usually

much smaller than the length scales of the temperature

and velocity fields. The time scales for the temperature,

velocity, and surface variations may be different or the

same depending on the transport mechanism. Before the

detailed derivation of the various scales of the problem

is given, a global picture about the multiple-scaled na-

ture of the thermocapillary convection in a rectangular

cavity will be depicted first in this section.

Since the surface temperature distribution is the

driving mechanism for thermocapillary convection, the

length scales of the temperature field will be discussed

first. As shown in Fig. 1, depending on the heat-transfer

mechanism, there may exist three different types of

surface temperature distribution. When conduction is

dominant or about the same order as convection, the

surface temperature varies gradually from the high

temperature, TH, at the left wall to the low temperature,

TL, at the right wall. The geometric length scales, ðL;DÞ,
will be the proper ones for the temperature field. As

convection becomes more and more important, a rapid

change of the surface temperature distribution will ap-

pear first near the low temperature or cold wall at right.



Fig. 1. (a) The geometrical configuration and coordinate system, (b) uniform surface temperature variation, (c) rapid surface tem-

perature variation near the cold wall and (d) rapid surface temperature variation near both the hot and cold walls.
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It is obvious that another length scale will be necessary

to describe properly the temperature variation in that

region. Moreover, since the surface temperature distri-

bution is the driving mechanism for the flow, the flow

behavior in the small region near the cold wall will be

different from that in the other portion of the cavity. As

convection becomes much stronger than conduction, the

surface temperature distribution may change rapidly

near both the hot (high temperature) and cold walls. In

such a case, three length scales may exist for the tem-

perature field; one is for the region near the hot wall,

another for the region close to the cold wall, and the

third for the central portion of the cavity where the

surface temperature variation becomes very mild.

Similar to the temperature field, the length scales of

the velocity field are determined by the mechanism of

momentum transport. For any of the three possibilities

of the surface temperature distribution, if the flow gen-

erated by the thermocapillarity is inertia dominant there

will exist a velocity boundary layer near the free surface,

which needs another length scale to describe properly

the flow behavior therein. If the flow is of viscous type,

the geometric depth of the liquid, D, will be one of the

length scale of the velocity field. Of course, other length

scales may exist near either the cold wall or the hot wall

in accordance with the surface temperature distribution.
In addition to the length scales of the temperature and

velocity fields, the surface deformation will generate

another length scale which must be properly determined

from the normal-force-balance boundary condition at

the free surface.

In the present study, the various space and time

scales for the temperature and velocity fields and the

surface variation as described above will be derived

through scaling analysis by proper balances between

physical terms in either the governing equations or the

boundary conditions. The scaling analysis was first ap-

plied to the thermocapillary convection by Ostrach [33].

However, the possible changes of the surface tempera-

ture distribution and the flow structure for different flow

regimes were not considered. Various length and time

scales for a half-zone configuration with a deformable

free surface were first investigated by Lai [30]. Para-

meters for predicting the onset of oscillatory thermo-

capillary flows were derived thereby. More detailed

analysis for the flow structures and temperature distri-

butions of steady thermocapillary flows in a square

cavity with a nondeformable free surface was pursued

later by Hu [34]. Although various scaling groups for

different flow regimes were obtained by Lai [30] and Hu

[34], several conjectures on the physical arguments were

applied during the scaling analysis, which makes the
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derivation of the dimensionless parameters not fully

convincing. Kamotani and Ostrach [31] rederived the

so-called S-parameter. However, the final dimensionless

parameter obtained was modified by a small power of

Ma and the aspect-ratio effect was not considered in the

analysis. The present study is therefore aimed at re-

solving these deficiencies. Various scales for the tem-

perature field, velocity field, and surface deformation

and the relevant dimensionless parameters are derived

properly. A clearer picture about the physical mecha-

nism for the onset of oscillatory thermocapillary con-

vection is thus provided.
2. Mathematical formulation

2.1. Governing equations and boundary conditions

The system to be considered is a two-dimensional

rectangular cavity of length L filled with an incom-

pressible liquid of depth D. The schematic diagram of

the physical model and the associated coordinate system

ðX ; Y Þ are shown in Fig. 1. The left wall of the cavity

is maintained at a higher temperature TH with the right

one at a lower temperature TL. A thermally insulated

boundary condition is applied at both the bottom wall

and the free surface. As time proceeds, thermal energy is

transferred from the left wall to the right one, resulting

in a nonuniform temperature distribution along the free

surface. Bulk flow is then generated through the ther-

mocapillary effect.

The following assumptions are made to simplify the

problem:

(1) The induced thermocapillary flows are two-dimen-

sional and incompressible.

(2) Gravitational force and the induced natural convec-

tion are negligibly small compared to the thermo-

capillary effects.

(3) Free surface deformation is small.

(4) The free surface and bottom wall are thermally insu-

lated.

(5) Viscous dissipation is neglected.

(6) The contact angle of the free surface at the end walls

are 90�.

Before the detailed derivation of the characteristic

quantities is presented in next section, the nondimen-

sionalization scheme applied conventionally will be

given first in the following.

Let ðx; yÞ, ðu; vÞ, t, p, h, h, and r represent, respec-

tively, the dimensionless forms of the coordinate system

ðX ; Y Þ, the velocity vector ðU ; V Þ, time s, pressure P ,
temperature T , the free surface height H , and the surface

tension r̂r. The nondimensionalization scheme conven-

tionally applied is as follows:
x ¼ X
L
; y ¼ Y

D
; t ¼ s

s0
; u ¼ U

U0

; v ¼ V
V0

;

h ¼ H
D
; p ¼ P � P1

P0
; h ¼ T � TL

DT0
; r ¼ r̂r

r̂r0

:

In the above expressions, U0 and V0 represent, respec-

tively, the characteristic velocities in the X - and Y -di-
rections; P0, the reference pressure; DT0 ¼ TH � TL, the
reference temperature difference; s0, the reference time

scale, and r̂r0 ¼ r̂r0
THþTL

2

� �
, the reference surface tension.

P1 is the ambient pressure. The reference quantities U0,

V0, P0, and s0 are usually determined from a viscous flow

consideration with conduction dominant. Thus, U0 ¼
Ajr̂rTjDT0=l, V0 ¼ AU0, P0 ¼ LlU0=D2, and s0 ¼ D2=a,
with A ¼ D=L denoting the aspect ratio and r̂rT ¼ or̂r=oT ,
the surface-tension derivative with respect to tempera-

ture.

Under the assumptions made above, the dimension-

less governing equations and boundary conditions for

the flow system considered herein possess the following

forms:

ou
ox
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oy

¼ 0 ð1Þ

1

Pr
ou
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þ A2Rr;0 u
ou
ox

�
þ v
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oy

�
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ox
þ A2 o

2u
ox2

�
þ o2u

oy2

�

ð2Þ

1

Pr
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ot

þ A2Rr;0 u
ov
ox

�
þ v

ov
oy

�
¼ � 1

A2

op
oy

þ A2 o
2v

ox2

�
þ o2v
oy2

�

ð3Þ

oh
ot

þ A2Ma;0 u
oh
ox

�
þ v

oh
oy

�
¼ A2 o

2h
ox2

þ o2h
oy2

ð4Þ

u ¼ 0; v ¼ 0; h ¼ 1 at x ¼ 0 ð5Þ

u ¼ 0; v ¼ 0; h ¼ 0 at x ¼ 1 ð6Þ

u ¼ 0; v ¼ 0;
oh
oy

¼ 0 at y ¼ 0 ð7Þ

At the free surface: (with the assumption of small sur-

face deformation) normal-force-balance boundary con-

dition:

ðA�2CaÞp � 2Ca
ov
oy

	 �r
o2h
ox2

ð8Þ

tangential-force-balance boundary condition:

ou
oy

	 � oh
ox

ð9Þ

thermally insulated boundary condition:

oh
oy

	 0 ð10Þ
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kinematic boundary condition:

1

A2Ma;0

� �
oh
ot

¼ v� u
oh
ox

ð11Þ

or

1

A2Ma;0

� �
oh
ot

¼ � o

ox

Z h

0

udy
� �

ð12Þ

The dimensionless parameters in the above expres-

sions are defined as follows:

A 
 D
L
¼ Aspect ratio ð13Þ

Pr 
 m
a
¼ Prandtl number ð14Þ

Rr;0 

jr̂rTjDT0D

lm

¼ surface-tension Reynolds number ð15Þ

Ma;0 

jr̂rTjDT0D

la
¼ PrRr;0 ¼ Marangoni number ð16Þ

Ca 
 jr̂rTjDT0
r̂r0

¼ Capillary number ð17Þ

The subscript ‘‘0’’ in Rr;0 and Ma;0 is intentionally in-

cluded to indicate that both parameters are based on the

conventional scaling analysis. They will be used as ref-

erences in next section where multiple-scale analysis is

performed.

2.2. Classification of flow regimes

From the dimensional analysis as shown in Section

2.1, the flow regimes can be classified according to the

order of magnitudes of A2Ma;0 and A2Rr;0. Therefore, four

flow regimes are possible; they are (i) A2Ma;0 6Oð1Þ and
A2Rr;0 6Oð1Þ, (ii) A2Ma;0 6Oð1Þ and A2Rr;0 � Oð1Þ, (iii)
A2Ma;0 � Oð1Þ and A2Rr;0 6Oð1Þ, and (iv) A2Ma;0 �
Oð1Þ and A2Rr;0 � Oð1Þ.

For case (i) with A2Ma;0 6Oð1Þ and A2Rr;0 6Oð1Þ,
conduction is dominant and the flow is of viscous type.

The geometric lengths will be the proper length scales for

both the temperature and velocity fields. For case (ii)

with A2Ma;0 6Oð1Þ and A2Rr;0 � Oð1Þ, conduction is

still the dominant mechanism for energy transport while

the flow is now of boundary-layer type. The length scale

for the velocity field in the Y -direction and near the free

surface should be re-scaled with the velocity boundary

layer thickness. For case (iii) and (iv) with A2Ma;0 �
Oð1Þ, the geometric length scales become improper to

the temperature field. All the length scales and other

reference quantities have to be reconsidered based on

appropriate physical reasoning. The analysis becomes

much more complicated and has been completely done

by Lai [35]. However, since the onsets of oscillatory
thermocapillary convection were observed and measured

both on ground and in space for the flow situation with

A2Ma;0 � Oð1Þ, A2Rr;0 � Oð1Þ, and Pr > Oð1Þ, Only the

multiple-scale analysis for this flow situation will be

given and discussed in the present study. People inter-

ested in the detailed derivation for all the four flow

regimes can refer to the analysis done by Lai [35].
3. Multiple-scale analysis

As discussed in last section, only the flow situations

with A2Ma;0 � Oð1Þ, A2Rr;0 � Oð1Þ, and Pr > Oð1Þ will
be analyzed in this section.

As shown in Fig. 2, for liquids with Pr > Oð1Þ, the
velocity boundary layer along the hot wall, dV;h, is thicker

than the thermal boundary layer along the same wall,

dT;h. The cooler fluid outside the thermal boundary layer

dT;h but within the velocity boundary layer dV;h is directed

toward the free surface before it turns and flows down-

stream toward the cold wall. As a result, the return flow

will provide a cooling effect on the surface flow and re-

sults in, consequently, a rapid descent of the surface

temperature distribution near the hot wall. Therefore, for

situations with A2Rr;0 � Oð1Þ and Pr > Oð1Þ (then

A2Ma;0 � Oð1Þ also), there will exist two small regions,

with one close to the hot wall and the other close to the

cold wall, wherein the surface temperature variation is

large. Across the central portion of the cavity, the surface

temperature variation is mild, resulting in the so-called

‘‘S-shaped’’ surface temperature distribution. With such

an S-shaped surface temperature distribution, the driving

force for the flow mainly comes from the surface-tension

gradient in the small regions near the hot and cold walls.

As it leaves the hot wall, the fluid is pulled by a strong

surface-tension gradient and reaches a locally maximum

velocity before it enters the central portion of the cavity,

as shown in Fig. 2. Because the driving force is greatly

reduced, the flow, when entering the central portion of

the cavity, is decelerated by the retarding viscous stress.

If the surface-tension gradient and the viscous shear

stress are about the same order of magnitude, the surface

flow might retain a nearly constant speed (the locally

maximum velocity in the small region near the hot wall)

crossing the central portion of the cavity. However, as

the flow enters the small region near the cold wall, the

fluid is suddenly accelerated and reaches a peak speed

due to the strong surface-tension gradient therein.

Therefore, although the flow can be divided into three

sub-regions based on the S-shaped surface temperature

distribution, there exist only two characteristic surface

velocities across the whole cavity. The locally maximum

velocity, US, attained in the small region near the hot

wall, i.e., DT;h, is the characteristic surface velocity for

both the region DT;h and the central portion of the cavity.

The peak value of the surface velocity in the small region



Fig. 2. The schematic diagrams of the surface temperature distribution, the surface velocity distribution, and other characteristic

quantities for situations with A2Ma;0 � Oð1Þ, A2Rr;0 � Oð1Þ, and Pr > Oð1Þ.
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near the cold wall, i.e., DT;C, is another local character-

istic velocity.

From the above discussion, it can be realized that the

derivation of the characteristic quantities for the present

situation is very complicated. Seven equations need to be

solved simultaneously to determine the two most es-

sential quantities, i.e., DT;h and US, among others. The

seven relations are listed in the following:

US

DT0
DT;h

� a
DT0
d2
TS ;h

ð18Þ

Vr
DT0
dTS ;h

� a
DT0
d2
TS ;h

ð19Þ

US �
dUS ;hjr̂rTjDT0

lDT;h

ð20Þ

Ur �
dUS

D
US ð21Þ
Vr � AUr ð22Þ

dUS
� L

USL
m

� �1=2 ð23Þ

dUS ;h �
DT;h

USDT;h

m

� 	1=2
ð24Þ

The physical meanings of the above relations are

described as follows:

Eq. (18) is the balance between the convection in the

X -direction and the conduction in the Y -direction near

the free surface in DT;h.

Eq. (19) is the balance between the convection and

conduction both in the Y -direction near the free surface

in DT;h. The determination of dTS ;h is also an indication of

the cooling effect of the return flow on the surface flow.

Eq. (20) represents the tangential-force-balance

boundary condition at the free surface in DT;h. Eq. (21)
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is a relation of mass conservation between the surface

flow and the return flow. Eq. (22) is from the continuity

equation of the return flow. Eq. (23) represents the ve-

locity boundary layer thickness along the free surface

across the cavity. Eq. (24) is an estimation of the ve-

locity boundary layer thickness along the free surface in

DT;h.

There are seven unknowns, i.e., DT;h, dTS ;h, dUS
, dUS ;h,

US, Ur, and Vr, involved in Eqs. (18)–(24). Their physical

meanings are shown in Fig. 2 and are described in the

following:

DT;h The length scale of the surface temperature

variation near the hot wall

dTS ;h The thermal boundary layer thickness along

the free surface in DT;h

dUS
The velocity boundary layer thickness along

the free surface across the cavity

dUS ;h The velocity boundary layer thickness along

the free surface in DT;h

US The characteristic surface velocity for both the

region DT;h and the central portion of the

cavity

Ur The characteristic velocity in the X -direction of

the return flow

Vr The characteristic velocity in the Y -direction of

the return flow

DT;h and US can now be determined from Eqs. (18)–

(24). With the aid of Eqs. (19) and (21)–(23), dTS ;h can be

re-expressed in terms of US, i.e.,

dTS ;h �
a
Vr

� a
AUr

� a

A
dUS
D US

� Da
A L

USL
mð Þ1=2

US

;

or

dTS ;h �
aL1=2

m1=2U 1=2
S

ð25Þ

By substituting Eq. (25) into Eq. (18), DT;h can then be

determined, which gives

DT;h �
L
Pr

ð26Þ

From Eqs. (20) and (24), US can be expressed as follows:

US �
dUS ;hjr̂rTjDT0

DT;hl
� DT;h

USDT;h

m

� 	1=2

1

DT;h

jr̂rTjDT0
l

� m1=2

U 1=2
S D1=2

T;h

jr̂rTjDT0
l

;

which gives

U 3=2
S � m1=2

D1=2
T;h

jr̂rTjDT0
l

ð27Þ
Substitution of Eq. (26) into Eq. (27) gives

U 3=2
S � m1=2

L1=2

Pr1=2

jr̂rTjDT0
l

� Pr1=2
m1=2

L1=2

jr̂rTjDT0
l

� Pr1=2

AR1=2
r;0

U 3=2
0 ð28Þ

US can then be derived from the above equation, i.e.,

US �
Pr1=3

A2=3R1=3
r;0

U0 ð29Þ

Thus, the characteristic velocity for both the region DT;h

and the central portion of the cavity increases with Pr and
decreases with Rr;0 if the aspect ratio A is fixed [36,37].

However, the conventionally adopted characteristic

surface velocity at the mid-point decreases with both Pr
and Rr;0 [24]. This is because the surface temperature

gradient and, thus, the thermocapillary driving force in

the central portion of the cavity is very mild and the force

acting on fluid particles is mainly due to viscous effect.

Consequently, the surface velocity therein decreases with

Pr and will underestimate the characteristic velocity.

With DT;h and US determined, all the other charac-

teristic quantities of interest in the region DT;h and the

central portion of the cavity can be easily derived from

Eqs. (18)–(24). The corresponding surface-tension Rey-

nolds number, Rr;S, and Marangoni number, Ma;S, pos-

sess the following forms:

Rr;S 

USL
m

¼
Pr1=3R2=3

r;0

A2=3
ð30Þ

and

Ma;S 
 PrRr;S ¼
Pr4=3R2=3

r;0

A2=3
¼ PrMa;0

A

� �2=3

ð31Þ

Before the derivation of the characteristic quantities

in the small region near the cold wall is presented, one

important aspect needs to be discussed first. For liquids

with Pr > Oð1Þ, the viscous diffusion is larger than the

thermal diffusion. Therefore, when approaching the cold

wall, the surface flow will decelerate first before the

surface temperature distribution starts to descend rap-

idly. There thus exist two length scales even in the small

region near the cold wall; one of which is for the surface

flow, DU ;C, and the other is for the surface temperature

distribution, DT;C. The characteristic surface velocity US

as derived previously is appropriate for the derivation

of DU ;C, but it is inappropriate for DT;C. The surface

velocity used to determine DT;C should be smaller than

US according to the above discussion. Let it be denoted

by U 0
S. With the assumption that A2Rr;0 � Oð1Þ, DU ;C is

usually very small. Using a linear variation of the sur-

face velocity within DU ;C to estimate U 0
S would be rea-

sonable, which gives
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U 0
S �

DT;C

DU ;C

US ð32Þ

By balancing the inertia with the viscous effect in the

X -direction, DU ;C is determined. Then DT;C can be esti-

mated, with the aid of Eq. (32), by balancing the con-

duction with the convection in the X -direction. They are

given as follows:

DU ;C � m
US

�
A2=3R1=3

r;0

Pr1=3
m
U0

� A2=3

Pr1=3R2=3
r;0

L ð33Þ

and

DT;C � a
U 0

S

� a
DT;C

DU ;C
US

or

DT;C � aDU ;C

US

� �1=2

� A1=3

Pr1=6R1=3
r;0

A1=3R1=6
r;0

Pr1=6
a1=2L1=2

U 1=2
0

� A2=3

Pr5=6R2=3
r;0

L ð34Þ

DT;C can also be expressed in terms of Ma;0, i.e.,

DT;C � A2=3

Pr1=6M2=3
a;0

L ð35Þ

The characteristic velocity in DT;C can now be de-

termined from the tangential-force-balance boundary

condition at the free surface, i.e.,

l
UC

dUS

� jr̂rTjDT0
DT;C

ð36Þ

The velocity boundary layer thickness near the free

surface, dUS
, due to US, has been applied in the above

equation. This is because, with A2Rr;0 � Oð1Þ, there al-

ready exists a velocity boundary layer along the free

surface before the fluid enters DT;C. Eq. (36) then gives,

with the aid of Eqs. (30) and (34),

UC � dUS

DT;C

jr̂rTjDT0
l

� A1=3

Pr1=6R1=3
r;0

Pr5=6R2=3
r;0

A2=3

jr̂rTjDT0
l

�
Pr2=3R1=3

r;0

A4=3
U0 ð37Þ

The pressure variation and the corresponding free

surface deformation in DT;C are estimated by the inertia

effect and the normal-force-balance boundary condition

at the free surface, respectively. They are given as fol-

lows:

PC � qU 2
C �

Pr4=3R2=3
r;0

A8=3
qU 2

0 ð38Þ

and
gC � PC
r̂r0

D2
T;C �

Pr4=3R2=3
r;0

A8=3

A4=3

Pr5=3R4=3
r;0

qU 2
0L

2

r̂r0

� 1

A4=3 Pr1=3R2=3
r;0

A2Rr;0Ca
L
A
;

or

gC �
R1=3

r;0Ca

A1=3 Pr1=3
L ð39Þ

To determine the time scales, the following defini-

tions are made first:

sT temperature time scale of the main surface flow

sV velocity time scale of the main surface flow

sT;C temperature time scale in DT;C

sV;C velocity time scale in DT;C

sS surface variation time scale in DT;C

Their expressions for the present flow situation are as

follows:

sT � L
US

�
A2=3R1=3

r;0

Pr1=3
L
U0

ð40Þ

sV � L
US

�
A2=3R1=3

r;0

Pr1=3
L
U0

ð41Þ

sT;C � DT;C

UC

� A2=3

Pr5=6R2=3
r;0

A4=3

Pr2=3R1=3
r;0

L
U0

� A2

Pr3=2Rr;0

L
U0

� A2

Pr1=2Ma;0

L
U0

ð42Þ

sV;C � DT;C

UC

� A2

Pr3=2Rr;0

L
U0

� A2

Pr1=2Ma;0

L
U0

ð43Þ

sS �
gCDT;C

USdUS

�
R1=3

r;0Ca

A1=3 Pr1=3
A2=3

Pr5=6R2=3
r;0

A2=3R1=3
r;0

Pr1=3
Pr1=6R1=3

r;0

A1=3

L
U0

�
A2=3R1=3

r;0Ca

Pr4=3
L
U0

ð44Þ

4. Concluding remarks

An unsteady, two-dimensional thermocapillary con-

vection with a deformable free surface in a rectangu-

lar cavity is analyzed. Four flow regimes defined in

the present study are: (A) situations with A2Ma;0 6Oð1Þ
and A2Rr;0 6Oð1Þ, (B) situations with A2Ma;0 6Oð1Þ and
A2Rr;0 � Oð1Þ, (C) situations with A2Ma;0 � Oð1Þ and

A2Rr;0 6Oð1Þ, and (D) situations with A2Ma;0 � Oð1Þ
and A2Rr;o � Oð1Þ. The temperature distribution and

flow structure are different from one flow regime to

another. The multiple-scale analysis based on appro-
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priate physical arguments has been applied to determine

the characteristic length, time, and velocity scales and

obtain a global picture for each flow regime by Lai [35].

However, only the analysis for the flow situations with

A2Ma;0 � Oð1Þ, A2Rr;0 � Oð1Þ, and Pr > Oð1Þ is pre-

sented herein because it is the flow regime where the

experimental data for the onset of oscillatory thermo-

capillary convection are available. One very important

and interesting result of the present study is concluded in

the following.

The ratio of the surface-variation time scale to the

convective time scale of the main surface flow can be

obtained from Eqs. (40) and (44), which gives the fol-

lowing relation:

sS
sT

� Ca
Pr

ð45Þ

Since sT ¼ sV, this relation also implies

sS
sV

� Ca
Pr

ð46Þ

The right-hand sides of Eqs. (45) and (46) is the ‘‘sur-

face-deformation number’’ or the so-called ‘‘S-number’’

claimed by Ostrach and Kamotani [12,31] and first de-

rived by Lai [30] based on several physical conjectures.

The validity of S-number has been justified by good and

consistent correlation among the on-ground and outer-

space experimental data, and has been presented and

published previously [12,30–32].

As proposed and verified by Lai [19,30], the surface

deformation will result in a time lag of the return flow

whichprovidesacoolingeffecton thesurfaceflow.Eqs. (45)

and(46),or, theS-parameter, therefore indicates, ina sense,

a delayed cooling effect of the return flow on the surface

temperature distribution of the main flow. This delayed

cooling effect of the return flow might result in an over-

shooting and undershooting of the surface temperature

distribution near the hot wall (vs. the steady equilibrium

state) and, hence, induce an oscillatory thermocapillary

convection as observed in the experiments.

Most important, the present study provides a theo-

retical basis for the derivation of the S-parameter. Be-

cause most the experimental data, either terrestrial or

outer-space, are all well correlated by the S-parameter, it

is therefore believed that the surface deformation is

crucial to the onset of oscillatory thermocapillary con-

vection. It is recommended herein that more effort and

attention need to be directed toward the study of oscil-

latory thermocapillary convection with a deformable

free surface.
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